On Stević-Sharma operator from the Zygmund space to the Bloch-Orlicz space
نویسندگان
چکیده
منابع مشابه
Composition Operator on Bergman-Orlicz Space
Recommended by Shusen Ding Let D denote the open unit disk in the complex plane and let dAz denote the normalized area measure on D. Φ α is defined as follows L Φ α {f ∈ HD : D ΦΦlog |fz|1 − |z| 2 α dAz < ∞}. Let ϕ be an analytic self-map of D. The composition operator C ϕ induced by ϕ is defined by C ϕ f f • ϕ for f analytic in D. We prove that the composition operator C ϕ is compact on L Φ α ...
متن کاملWeighted Composition Operator from Bers-Type Space to Bloch-Type Space on the Unit Ball
In this paper, we characterize the boundedness and compactness of weighted composition operator from Bers-type space to Bloch-type space on the unit ball of Cn. 2010 Mathematics Subject Classification: Primary: 47B38; Secondary: 32A37, 32A38, 32H02, 47B33
متن کاملWeighted Composition Operator from Bloch–type Space to H∞ Space on the Unit Ball
In this paper, we characterize those holomorphic symbols u on the unit ball B and holomorphic self-mappings φ of B for which the weighted composition operator uCφ is bounded or compact from Bloch-type space to H∞ space. Mathematics subject classification (2010): Primary 47B33; Secondary 47B38.
متن کاملOn a New Integral-Type Operator from the Weighted Bergman Space to the Bloch-Type Space on the Unit Ball
We introduce an integral-type operator, denoted by P φ , on the space of holomorphic functions on the unit ball B ⊂ C, which is an extension of the product of composition and integral operators on the unit disk. The operator norm of P φ from the weighted Bergman space A p α B to the Bloch-type space Bμ B or the little Bloch-type space Bμ,0 B is calculated. The compactness of the operator is cha...
متن کاملStević-Sharma Operators from Area Nevanlinna Spaces to Bloch-Orlicz Type Spaces
Let D be the open unit disk in the complex plane C, H(D) the class of all analytic functions on D and φ an analytic self-map of D. In order to unify the products of composition, multiplication, and differentiation operators, Stević and Sharma introduced the following so-called Stević-Sharma operator on H(D): Tψ1,ψ2,φf(z) = ψ1(z)f(φ(z)) + ψ2(z)f ′(φ(z)), where ψ1, ψ2 ∈ H(D). By constructing some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2015
ISSN: 1687-1847
DOI: 10.1186/s13662-015-0567-7